Skip to Main Content U.S. Department of Energy
Energy Materials Group

Qiuyan Li

Qiuyan Li

Pacific Northwest National Laboratory
PO Box 999
Richland, WA 99352

Biography

Mr. Li is currently a Research Scientist in the Electrochemical Materials and Systems Group in the Energy Processes and Materials Division at PNNL. He has expertise and extensive experience in the development of lithium ion battery, especially for the design including dimension and materials, platform development and system integration of lithium ion battery, the fabrication and process optimization of pouch cell, the development of electrode (both cathode and anode) materials and electrolyte for Li-ion batteries, the development of primary Li-metal microbatteries and the study of Li-sulfur batteries. Before joining PNNL in 2014, Mr. Li was an engineer in Amperex Technology Limited (ATL) for three years. He has been performing the fabrication of microbatteries and working on Advance Batteries Facility (ABF) at PNNL, He is also involved in development of Li-S batteries to solve wetting issue and improve adhesion of sulfur electrode. He also has extensive experience in product and project management and has performed numerous electrochemical measurements and fabricated numerous pouch cells of new energy storage systems.

Research Interests

  • Mr. Li's research interests include the development of materials (electrolytes and electrodes) for lithium ion battery and lithium sulfur battery, the design, fabrication and process optimization for various energy storage systems in pouch cell.

Education and Credentials

  • M.S., Materials Science and Engineering, Tianjin Polytechnic University, Tianjin, China, 09/2009 to 03/2012.
  • B.S., Applied Chemistry, Tianjin Polytechnic University, Tianjin, China, 09/2005 to 07/2009.

Selected Publications

2017

  • Ding MS, Q Li, X Li, W Xu, and K Xu. 2017. "Effects of Solvent Composition on Liquid Range, Glass Transition, and Conductivity of Electrolytes of a (Li, Cs)PF6 Salt in EC-PC-EMC Solvents." The Journal of Physical Chemistry C 121(21):11178-11183.  doi:10.1021/acs.jpcc.7b03306
  • Li Q, S Jiao, L Luo, MS Ding, J Zheng, SS Cartmell, C Wang, K Xu, J Zhang, and W Xu. 2017. "Wide temperature electrolytes for lithium-ion batteries." ACS Applied Materials & Interfaces 9(22):18826-18835.  doi:10.1021/acsami.7b04099
  • Lu D, J Tao, P Yan, WA Henderson, Q Li, Y Shao, ML Helm, O Borodin, GL Graff, B Polzin, CM Wang, MH Engelhard, J Zhang, JJ De Yoreo, J Liu, and J Xiao. 2017. "Formation of Reversible Solid Electrolyte Interface on Graphite Surface from Concentrated Electrolytes." Nano Letters 17(3):1602-1609.  doi:10.1021/acs.nanolett.6b04766
  • Wang Y, SS Cartmell, Q Li, J Xiao, H Li, Z Deng, and J Zhang. 2017. "A reliable sealing method for microbatteries." Journal of Power Sources 341:443447.  doi:10.1016/j.jpowsour.2016.12.024

2015

  • Lu D, J Zheng, Q Li, X Xie, SA Ferrara, Z Nie, BL Mehdi, ND Browning, J Zhang, GL Graff, J Liu, and J Xiao. 2015. "High Energy Density Lithium-Sulfur Batteries: Challenges of Thick Sulfur Cathodes." Advanced Energy Materials 5(16):Article No. 1402290.  doi:10.1002/aenm.201402290
  • Lu D, P Yan, Y Shao, Q Li, SA Ferrara, H Pan, GL Graff, B Polzin, CM Wang, J Zhang, J Liu, and J Xiao. 2015. "High Performance Li-ion Sulfur Batteries Enabled by Intercalation Chemistry." Chemical Communications 51(70):13454-13457.  doi:10.1039/C5CC05171A
  • Wang Y, B Liu, Q Li, SS Cartmell, SA Ferrara, Z Deng, and J Xiao. 2015. "Lithium and lithium ion batteries for applications in microelectronic devices: A review." Journal of Power Sources 286:330-345.  doi:10.1016/j.jpowsour.2015.03.164
  • Yan P, J Zheng, S Kuppan, Q Li, D Lv, J Xiao, G Chen, J Zhang, and CM Wang. 2015. "Phosphorus Enrichment as a New Composition in the Solid Electrolyte Interphase of High-Voltage Cathodes and Its Effects on Battery Cycling." Chemistry of Materials 27(21):7447-7451.  doi:10.1021/acs.chemmater.5b03510

About EMS

Energy Storage Program

Related Links

Additional Information

Contacts


509/375-2370