Skip to Main Content U.S. Department of Energy
Battery Materials & Systems Group banner

David Reed

David Reed

Pacific Northwest National Laboratory
PO Box 999
Richland, WA 99352


David Reed has over 20 years of experience in the materials science field. Before joining PNNL in 2010, he worked in industry at 3M in St. Paul, MN and Praxair in Tonawanda, NY. While in industry, David worked in a number of areas including high temperature electrochemistry, materials synthesis and processing, alternative manufacturing methods, dielectric materials, coatings, failure analysis, new materials development, design of experiments, and rapid commercialization processes. His primary focus at PNNL has been developing and testing new materials and components in electrochemical devices. David is currently the PNNL Program Manager for the DOE Office of Electricity sponsored program focus on new electrochemical device technologies for energy storage and Project Manager for several industrial sponsored programs.

Research Interests

  • Energy Storage Devices
  • High Temperature Electrochemistry
  • Microstructure-Property Relations in Materials
  • Electroceramic Materials and Composites
  • Synthesis and Processing of Materials
  • Energy Efficient Buildings

Education and Credentials

  • B.S. Ceramic Science and Engineering, Pennsylvania State University
  • M.S. Solid State Science, Pennsylvania State University
  • Ph.D. Ceramic Engineering, University of Missouri-Rolla

PNNL Publications


  • Song J., D. Xiao, H. Jia, G. Zhu, M.H. Engelhard, B. Xiao, and S. Feng, et al. 2019. "A Comparative Study of Pomegranate Sb@C Yolk-Shell Microspheres as Li and Na-Ion Battery Anodes." Nanoscale 11, no. 1:348-355. PNNL-SA-139714. doi:10.1039/c8nr08461k


  • Crawford A.J., Q. Huang, M. Kintner-Meyer, J. Zhang, D.M. Reed, V.L. Sprenkle, and V.V. Viswanathan, et al. 2018. "Lifecycle Comparison of Selected Li-ion Battery Chemistries under Grid and Electric Vehicle Duty Cycle Combinations." Journal of Power Sources 380. PNNL-SA-128874. doi:10.1016/j.jpowsour.2018.01.080
  • Hollas A.M., X. Wei, V. Murugesan, Z. Nie, B. Li, D.M. Reed, and J. Liu, et al. 2018. "A biomimetic high-capacity phenazine-based anolyte for aqueous organic redox flow batteries." Nature Energy 3, no. 6:508-514. PNNL-SA-130788. doi:10.1038/s41560-018-0167-3


  • Wei X., W. Pan, W. Duan, A.M. Hollas, Z. Yang, B. Li, and Z. Nie, et al. 2017. "Materials and Systems for Organic Flow Batteries: Status and Challenges." ACS Energy Letters 2, no. 9:2187-2204. PNNL-SA-128015. doi:10.1021/acsenergylett.7b00650


  • Crawford A.J., E.C. Thomsen, D.M. Reed, D.E. Stephenson, V.L. Sprenkle, J. Liu, and V.V. Viswanathan. 2016. "Development and Validation of Chemistry Agnostic Flow Battery Cost Performance Model and Application to Non-Aqueous Electrolyte Systems." International Journal of Energy Research. PNNL-SA-113966. doi:10.1002/er.3526
  • Estevez L., D.M. Reed, Z. Nie, A.M. Schwarz, M.I. Nandasiri, J.P. Kizewski, and W. Wang, et al. 2016. "Tunable oxygen functional groups as electro-catalysts on graphite felt surfaces for all vanadium flow batteries." ChemSusChem 9, no. 12:1455-1461. PNNL-SA-113820. doi:10.1002/cssc.201600198
  • Li B., J. Liu, Z. Nie, W. Wang, D.M. Reed, J. Liu, and B.P. McGrail, et al. 2016. "Metal-organic frameworks as highly active electrocatalysts for high-energy density, aqueous zinc-polyiodide redox flow batteries." Nano Letters 16, no. 7:4335-4340. PNNL-SA-116994. doi:10.1021/acs.nanolett.6b01426
  • Reed D.M., E.C. Thomsen, B. Li, W. Wang, Z. Nie, B.J. Koeppel, and J.P. Kizewski, et al. 2016. "Stack Developments in a kW class all vanadium mixed acid redox flow battery at the Pacific Northwest National Laboratory." Journal of the Electrochemical Society 163, no. 1:A5211-A5219. PNNL-SA-112057. doi:10.1149/2.0281601jes
  • Reed D.M., E.C. Thomsen, B. Li, W. Wang, Z. Nie, B.J. Koeppel, and V.L. Sprenkle. 2016. "Performance of a Low Cost Interdigitated Flow Design on a 1 kW Class All Vanadium Mixed Acid Redox Flow Battery." Journal of Power Sources 306. PNNL-SA-112126. doi:10.1016/j.jpowsour.2015.11.089
  • Wei X., W. Duan, J. Huang, L. Zhang, B. Li, D.M. Reed, and W. Xu, et al. 2016. "A High-Current, Stable Nonaqueous Organic Redox Flow Battery." ACS Energy Letters 1, no. 4:705-711. PNNL-SA-112127. doi:10.1021/acsenergylett.6b00255


  • Crawford A.J., V.V. Viswanathan, D.E. Stephenson, W. Wang, E.C. Thomsen, D.M. Reed, and B. Li, et al. 2015. "Comparative analysis for various redox flow batteries chemistries using a cost performance model." Journal of Power Sources 293. PNNL-SA-108277. doi:10.1016/j.jpowsour.2015.05.066
  • Reed D.M., E.C. Thomsen, W. Wang, Z. Nie, B. Li, X. Wei, and B.J. Koeppel, et al. 2015. "Performance of NafionŽ N115, NafionŽ NR-212, and NafionŽ NR-211 in a 1 kW Class All Vanadium Mixed Acid Redox Flow Battery." Journal of Power Sources 285. PNNL-SA-108089. doi:10.1016/j.jpowsour.2015.03.099


  • Reed D.M., G.W. Coffey, E.S. Mast, N.L. Canfield, J. Mansurov, X. Lu, and V.L. Sprenkle. 2013. "Wetting of Sodium on ß?-Al2O3/YSZ Composites for Low Temperature Planar Sodium-Metal Halide Batteries." Journal of Power Sources 227. PNNL-SA-89519. doi:10.1016/j.jpowsour.2012.11.034

About BMS

Energy Storage Program

Related Links

Additional Information


- (acting TGM)